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1 Introduction

Residuated lattices are the algebraic models of substructural logics, and have
been studied since the late 1930’s [9]. The varieties of residuated lattices and
full Lambek algebras (FL-algebras) [7] include many well-known varieties of
logic, such as the varieties of Boolean algebras, Gödel algebras, Heyting algebras,
MV-algebras, Basic Logic algebras and involutive FL-algebras. These varieties
contain many finite algebras and, apart from the variety of Boolean algebras,
they all have infinitely many subvarieties. Recall that a residuated lattice is an
algebra (A,∧,∨, ·,1, \, /) such that (A,∧,∨) is a lattice, (A, ·,1) is a monoid, and
for all x, y, z ∈ A the equivalences xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z hold.
An FL-algebra is a residuated lattice with an additional constant 0 that can
denote any element of the algebra. For background about residuated lattices,
FL-algebras and notation and terminology of universal algebra, we refer the
reader to [3]. In particular, we consider residuated lattices as a subvariety of FL-
algebras, defined by the identity 0 = 1. Since all algebras considered here have
lattice reducts, they have distributive congruence lattices. Moreover, the lattice
Λ(FL) of subvarieties of FL-algebras is a complete sublattice of the congruence
lattice of the countably generated free FL-algebra, hence Λ(FL) is a distributive
lattice.

A variety V is called finitely generated if there is a finite set {A1, A2, . . . , An}
of finite algebras such that V = HSP{A1, A2, . . . , An}. Since any finite algebra
is a subdirect product of finitely many finite subdirectly irreducible algebras,
and since varieties are determined by there subdirectly irreducible algebras, we
can assume that the generating algebras A1, . . . , An are subdirectly irreducible.
Furthermore V = HSP{A1} ∨ · · · ∨ HSP{An}, so if V is join-irreducible, then
it is generated by a single finite subdirectly irreducible algebra. For congruence
distributive varieties it follows from Jónsson’s Lemma [5] that the converse also
holds: if a variety is generated by a single finite subdirectly irreducible algebra
then it is completely join-irreducible in the lattice of subvarieties and, in addition,
it has only finitely many subvarieties, each itself finitely generated. Hence one
concludes that the finitely generated varieties form an ideal in the lattice Λ(FL).

By distributivity of Λ(FL), the structure of this ideal is determined by the
poset of join-irreducible varieties in it, i.e., there is a one-one correspondence
between finitely generated varieties of FL-algebras and finite downsets in this
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Fig. 1. Lattices of size up to 5

poset of join-irreducible varieties. By another application of Jónsson’s Lemma,
if A,B are finite subdirectly irreducible FL-algebras, then HSP{A} ⊆ HSP{B}
if and only if A ∈ HS{B}. As a result, one obtains a description of the ideal of
finitely generated varieties by computing the so-called HS-poset of finite subdi-
rectly irreducible FL-algebras.

The aim of this note is to describe a small part of the bottom of this poset
by enumerating the subdirectly irreducible residuated lattices of up to 5 ele-
ments and computing their subalgebras and homomorphic images (up to iso-
morphism). The results are summarised in several tables and diagrams below,
together with a brief discussion of the familiar algebras within these tables and
how they are organized. A longer list of finite residuated lattices is available
at www.chapman.edu/~jipsen/gap/rl.html. An enumeration of commutative
integral residuated lattices up to size 12 is at vychodil.inf.upol.cz/order/,
[1].

2 Diagrams and tables

Rather than just providing lists of algebras, we would like to also give a view
of the poset and arrange the algebras in a way that groups similar algebras
together. We consider algebras to be similar if they satisfy the same identities
that define specific well-known subvarieties of FL-algebras.

There are 1+1+3+20+149 = 174 residuated lattices with 1,2,3,4,5 elements
respectively. The lattice reducts of these algebras are listed in Figure 1. The n-
element chain is simply denoted by n, and the remaining lattices are D = 2× 2,
E = 1⊕D, F = D⊕1, M and N , where ⊕ denotes ordinal sum, and the last two
lattices are the 5-element modular lattice and nonmodular lattice respectively,
usually referred to as the diamond and the pentagon. For the 1,2,3,4,5-element
chains there are exactly 1 + 1 + 3 + 15 + 84 = 104 linearly ordered residuated
lattices, and for the lattices D,E, F,M,N there are 5 + 20 + 11 + 8 + 26 = 70
residuated lattices. Individual residuated lattices are denoted Ln, where L ∈
{1, 2, 3, 4, 5, D,E, F,M,N} and n is an index that enumerates the algebras that
have lattice L as reduct. So for example the three 3-element residuated lattices



are 31, 32, 33, and in the lists below they are the 3-element Wasjberg hoop (or
MV-algebra if 0 = 0), the 3-element Brouwerian algebra (or Gödel algebra if
0 = 0) and the 3-element Sugihara algebra respectively.

RL var FL var Description

GBA BA (Generalized) Boolean algebras: xx = x and WH, MV
WH MV Wajsberg hoops, MV-algebras: involutive BL-algebras
BH BL Basic hoops, Basic logic algebras: x ∧ y = x(x\y),CRRL,RFLew

RBr GA Representable Br-algs, Gödel algebras: s.i. are linear Br, HA
Br HA Browerian algebras, Heyting algebras: xy = x ∧ y
CRL FLe Commutative RL, FL with the exchange rule: xy = yx
DRL DFL Distributive RL, FL: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

InFL Involutive RL, FL: 0/(x\0) = x = (0/x)\0
IRL FLw Integral RL: x ≤ 1, FL with weakening: 0 ≤ x ≤ 1
RRL RFL Representable RL, FL: s.i. algebras are linear

Table 1. Names of subvarieties

To fully specify a finite residuated lattice, it suffices to give its lattice reduct
and a join-preserving monoid operation, since the residuals \, / are uniquely
determined by this information, e.g., z/y =

∨
{x | xy ≤ z}. In the tables below,

the monoid is presented as a transformation monoid, hence a residuated lattice
is given by 〈Ln, i, list of transformations〉. Here Ln is the lattice reduct with a
unique index, i is the element denoted by the identity constant 1, and each tuple
t = d1d2 . . . dm of digits is a transformation t : {0, 1, . . . ,m} → {0, 1, . . . ,m}
where t(0) = 0 and t(k) = dk for k = 1, . . . ,m. Although it would suffice to give
only a generating set of transformations, the tables give a complete set, except
that the identity 123 . . .m is omitted. This makes it very easy to construct the
operation table for the monoid, since one can simply stack the transformations
on top of each other, insert the identity transformation at row i, and add a row
and column of zeros. For example, the residuated lattice 〈E20, 2, 1133, 1333, 1434〉
has a monoid operation given by

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 1 3 3
2 0 1 2 3 4
3 0 1 3 3 3
4 0 1 4 3 4

An FL-algebra is a residuated lattice with one extra constant 0, hence there are

1 · 1 + 2 · 1 + 3 · 3 + 4 · 15 + 5 · 84 + 4 · 5 + 5 · (20 + 11 + 8 + 26)− 9 = 828

FL-algebras with up to 5 elements. The “−9” term is an adjustment since there
are 9 residuated lattices among the 174 that have a nontrivial automorphism



RL var FL var Name, id, transformations Sub Hom

Triv Triv 〈11, 0〉
GBA BA 〈21, 1〉
WH MV 〈31, 2, 01〉 21

RBr GA 〈32, 2, 11〉 21 21

CRRL RInFLe 〈33, 1, 22〉
WH MV 〈41, 3, 001, 012〉 21

BH BL 〈42, 3, 011, 122〉 31 32 31

〈43, 3, 111, 112〉 31 32 21

RBr GA 〈44, 3, 111, 122〉 32 32

CIRRL RInFLew 〈45, 3, 001, 022〉 21 21

CIRRL RFLew 〈46, 3, 001, 002〉 31

IRRL RFLw 〈47, 3, 001, 122〉 21

〈48, 3, 011, 022〉 21

CRRL RInFLe 〈49, 1, 233, 333〉 33

〈410, 2, 113, 333〉 21 33 33

CRRL RFLe 〈411, 1, 223, 333〉 33

〈412, 2, 011, 133〉
〈413, 2, 111, 133〉 33 21

RRL RFL 〈414, 2, 111, 333〉
〈415, 2, 113, 133〉

GBA BA 〈D1, 3, 101, 022〉 21 21

CDRL DInFLe 〈D2,1, 1, 202, 323〉 33

〈D3,1, 1, 213, 333〉 33

〈D4,2, 1, 233, 333〉 33

CDRL DFLe 〈D5, 1, 222, 323〉 33

Table 2. Residuated lattices of size ≤ 4

group of size 2 (they are D1, E1, E3, E5, F1, F3,M3,M4,M8, and in each case the
automorphism switches the two nonidentity elements of the same height in the
lattice). All other algebras in the list have no proper automorphisms. Note that
the constant 0 and the least element 0 of each lattice are in general distinct,
though they do coincide for FLo-algebras (defined as FL-algebras where 0 is the
bottom element). We do not list all FL-algebras separately in this note, but when
we need to refer to a specfic one, we use the notation Ln,k where k indicates
which element of the lattice is the constant 0.

Subvarieties of FL-algebras use the same names as in [3]. In Table 1 we
recall the relevant ones briefly to make this note more self-contained. Mostly the
residuated lattice varieties (1st column) are obtained from the corresponding FL
varieties (2nd column) by adding the equation 0 = 1, but defining identities that
refer to 0 are only applied to the FL varieties.

Intersections of these varieties are denoted by listing prefixes and/or subscript
in alphabetical order, e.g., CDIRL and DFLew. We use the subvarieties to organize
the algebras in the tables.



RL var FL var Name, id, transformations Sub Hom

WH MV 〈51, 4, 0001, 0012, 0123〉 31

BH BL 〈52, 4, 0011, 0122, 1233〉 32 41 41

〈53, 4, 0111, 1222, 1223〉 42 43 31

〈54, 4, 0111, 1222, 1233〉 42 44 42

〈55, 4, 1111, 1112, 1123〉 32 41 21

〈56, 4, 1111, 1122, 1233〉 42 43 44 43

〈57, 4, 1111, 1222, 1223〉 43 44 32

RBr GA 〈58, 4, 1111, 1222, 1233〉 44 44

〈E1, 4, 1111, 1212, 1133〉 32 D1 32

Br HA 〈F3, 4, 1011, 0222, 1233〉 32 D1

CIRRL RInFLew 〈59, 4, 0001, 0012, 0113〉 31 41

〈510, 4, 0001, 0022, 0233〉 31 45 31

CIRRL RFLew 〈511, 4, 0001, 0002, 0003〉 46

〈512, 4, 0001, 0002, 0013〉 21

〈513, 4, 0001, 0002, 0023〉 41

〈514, 4, 0001, 0002, 0033〉 45 21

〈515, 4, 0001, 0112, 0113〉 41

〈516, 4, 0001, 0222, 0223〉 31 21

〈517, 4, 0001, 0222, 0233〉 32 45 32

〈518, 4, 0011, 0012, 1133〉 31 32 31

〈519, 4, 0011, 0022, 1233〉 42 46 46

〈520, 4, 0011, 0222, 1233〉 32 45 45

〈521, 4, 1111, 1112, 1113〉 43 46 21

〈522, 4, 1111, 1112, 1133〉 32 45 32

Table 3.

If a residuated lattice can also be an involutive FL-algebra (with 0 redefined),
then it appears in a section of the table that is labeled by a variety of involutive
FL-algebras. The linear lattices and the pentagon have a unique dual automor-
phism, so for involutive FL-algebras with these lattice reducts the value of 0
is the image of 1 under this dual automorphism. However for D and M there
are several dual automorphisms, and in this case we use names Dn,k and Mn,k,
where k gives the value of 0. There are 3 residuated lattices of size ≤ 5 that can
be involutive FL-algebras in two nonisomorphic ways. The algebras are listed in
the table as D3,1, M1,1 and M4,1 (also referred to as simply D3,M1,M4), and
alternative values of 0 give nonisomorphic InFL-algebras D3,2, M1,3 and M4,2

(not listed in the tables, but they appear in Figure 4).

The tables of algebras also contain information about the HS-poset of the
subdirectly irreducible residuated lattices. In the last two columns they list for
each algebra the proper maximal nontrivial subdirectly irreducible subalgebras
and the proper maximal nontrivial subdirectly irreducible homomorphic images
respectively. So if the last column is empty, then the algebra is simple, and if the
next-to-last column is also empty then the algebra is strictly simple and hence
generates a variety that is an atom in the lattices of subvarieties. The results



RL var FL var Name, id, transformations Sub Hom

IRRL RFLw 〈523, 4, 0001, 0002, 0113〉 21

〈524, 4, 0001, 0002, 0233〉 21

〈525, 4, 0001, 0002, 1133〉 21

〈526, 4, 0001, 0002, 1233〉 47

〈527, 4, 0001, 0012, 0013〉 21

〈528, 4, 0001, 0022, 0033〉 21

〈529, 4, 0001, 0022, 1233〉 31

〈530, 4, 0001, 0222, 1233〉 32 21

〈531, 4, 0001, 1222, 1223〉 31

〈532, 4, 0001, 1222, 1233〉 32 47

〈533, 4, 0011, 0012, 0033〉 21

〈534, 4, 0011, 0012, 1233〉 31 32

〈535, 4, 0011, 0022, 0033〉 48

〈536, 4, 0011, 0022, 0233〉 31

〈537, 4, 0011, 0022, 1133〉 31 32

〈538, 4, 0011, 0222, 0233〉 32 21

〈539, 4, 0011, 1222, 1233〉 32 47 47

〈540, 4, 0111, 0222, 0223〉 31

〈541, 4, 0111, 0222, 0233〉 32 48

〈542, 4, 0111, 0222, 1233〉 32 48 48

〈543, 4, 1111, 1112, 1233〉 32 47 21

〈544, 4, 1111, 1122, 1133〉 32 48 21

CRRL RInFLe 〈545, 1, 2244, 3444, 4444〉 49 411

〈546, 1, 2344, 3444, 4444〉 49

〈547, 2, 1114, 1334, 4444〉 33 33

〈548, 3, 0012, 0022, 2244〉 412

〈549, 3, 1114, 1124, 4444〉 31 410 33

Table 4.

about subalgebras change if one considers FL-algebras, since in that case the
constant 0 must also be in the subaglebra. This information is not indicated
in the tables, but in the diagrams of the HS-posets dashed lines are used for
ordering relations that hold for residuated lattices but not for FLo-algebras.

Almost all the residuated lattices of size ≤ 5 are subdirectly irreducible.
The only exceptions are 11, D1 and E1. Since there are so many subdirectly
irreducible algebras, it is not practical to give a diagram of the HS-poset of
all of them. Figure 2 shows the HS-poset of all subdirectly irreducible residu-
ated lattices with ≤ 4 elements, Figure 3 shows it for linearly ordered integral
residuated lattices with ≤ 5 elements, and Figure 4 shows it for involutive FL-
algebras with ≤ 5 elements. Strictly speaking the trivial algebra (11) and the
varieties in the upper half of these diagrams are not part of the HS-poset, but
they indicate what equational properties are satisfied by the algebras that are
below them. This helps with identifying some of the algebras in these diagrams.
E.g. in Figure 3 we see that the algebras 21, 31, 41, 51 are subdirectly irreducible



RL var FL var Name, id, transformations Sub Hom

CRRL RFLe 〈550, 1, 2234, 3334, 4444〉 411

〈551, 1, 2234, 3344, 4444〉 411

〈552, 1, 2334, 3334, 4444〉 411

〈553, 1, 2444, 3444, 4444〉 49

〈554, 2, 0111, 1334, 1444〉 412

〈555, 2, 0111, 1344, 1444〉 412

〈556, 2, 1111, 1334, 1444〉 411 413 21

〈557, 2, 1111, 1344, 1444〉 49 413 21

〈558, 2, 1134, 3334, 4444〉 410 411 411

〈559, 2, 1134, 3344, 4444〉 49 410 49

〈560, 3, 0011, 0022, 1244〉 412

〈561, 3, 0011, 0122, 1244〉
〈562, 3, 0011, 0222, 1244〉 33 21

〈563, 3, 0111, 1222, 1244〉 413 31

〈564, 3, 0111, 1224, 1444〉 21 412 412

〈565, 3, 1111, 1122, 1244〉 412 21

〈566, 3, 1111, 1222, 1244〉 413 32

〈567, 3, 1111, 1224, 1444〉 410 413 21 413

〈568, 3, 1114, 1224, 4444〉 32 410 410

CDIRL DFLew 〈F1, 4, 0001, 0002, 0003〉 46

〈F2, 4, 0001, 0222, 0223〉 31 21

DIRL DFLw 〈E2, 4, 0011, 1212, 0033〉 21

RRL RFL 〈569, 1, 2234, 3444, 4444〉 411

〈570, 1, 2244, 3344, 4444〉 411

〈571, 2, 1111, 1334, 4444〉
〈572, 2, 1114, 1334, 1444〉
〈573, 2, 1114, 3334, 4444〉 33

〈574, 2, 1134, 1334, 4444〉 33

〈575, 3, 0011, 0022, 2244〉 412

〈576, 3, 0011, 1222, 1244〉 33

〈577, 3, 0012, 0022, 1244〉 412

〈578, 3, 0111, 0222, 1244〉 33

〈579, 3, 0111, 1222, 1444〉
〈580, 3, 0111, 1224, 1244〉
〈581, 3, 1111, 1222, 1444〉 414 21

〈582, 3, 1111, 1224, 1244〉 415 21

〈583, 3, 1111, 1224, 4444〉 21 414 414

〈584, 3, 1114, 1224, 1444〉 21 415 415

Table 5.

Wasjberg hoops, hence they are the 0-free reducts of the MV-chains that are
usually denoted MV1,MV2,MV3,MV4. Likewise the algebras 21, 32, 44, 58 are
linearly ordered Brouwerian algebras, so they are reducts of the Gödel algebras
GA2,GA3,GA4,GA5. The algebras D3,2 and D4,2 = D4 are two 4-element



RL var FL var Name, id, transformations Sub Hom

CDRL DFLe 〈E3, 1, 2244, 3434, 4444〉 411

〈E4, 1, 2244, 3444, 4444〉 49 411

〈E5, 1, 2444, 3444, 4444〉 49

〈E6, 2, 0101, 0303, 1434〉
〈E7, 2, 0101, 0313, 1434〉
〈E8, 2, 0101, 0333, 1434〉
〈E9, 2, 0111, 1324, 1444〉 412

〈E10, 2, 0111, 1333, 1434〉 412

〈E11, 2, 0111, 1344, 1444〉 412

〈E12, 2, 1111, 1313, 1434〉 413 D2 21

〈E13, 2, 1111, 1324, 1444〉 413 D3 21

〈E14, 2, 1111, 1333, 1434〉 413 D5 21

〈E15, 2, 1111, 1344, 1444〉 413 D4 21

〈E16, 2, 1133, 3333, 3434〉 21 33 33

〈F4, 1, 2022, 3234, 4244〉 33

〈F5, 1, 2134, 3334, 4444〉 411

〈F6, 1, 2222, 3234, 4244〉 33

〈F7, 1, 2224, 3234, 4444〉 411

〈F8, 1, 2334, 3334, 4444〉 411

〈F9, 1, 2444, 3444, 4444〉 49

DRL DFL 〈E17, 2, 0101, 1333, 1434〉
〈E18, 2, 0111, 0333, 1434〉
〈E19, 2, 1111, 3333, 3434〉
〈E20, 2, 1133, 1333, 1434〉
〈F10, 1, 2222, 3234, 4444〉 33

〈F11, 1, 2224, 3234, 4244〉 33

Table 6.

symmetric relation algebras that generate varieties covering the trivial variety
(as seen in Figure 4).

The software to calculate the tables and diagrams was written in Python
using the open-source computer algebra package Sage [8]. The subalgebras and
homomorphic images were calculated with the help of the model finder package
Mace4 [6], and the layout of the diagrams was improved by using the poset
applet at www.chapman.edu/~jipsen/posets.html.

From the data in this note one can make a few observations. Even for fi-
nite simple residuated lattices it is unlikely that a good structure theory can be
found. There do not seem to be many restrictions on the monoids that can be the
reducts of finite residuated lattices. On the other hand for finite MV-algebras,
BL-algebras, Heyting algebras and GBL-algebras, there does exist a good struc-
ture theory for the finite algebras: finite MV-algebras are direct products of fi-
nite MV-chains, finite Heyting algebras are finite distributive lattices expanded
with a Heyting arrow, finite GBL-algebras are poset products of MV-chains [4],
whence finite BL-algebras are tree products of MV-chains [2]. Perhaps a careful



RL var FL var Name, id, transformations Sub Hom

CRL InFLe 〈M1,1, 1, 2022, 3214, 4244〉 D2 D3

〈M2,3, 1, 2022, 3244, 4244〉 D2 D4

〈M3,1, 1, 2202, 3033, 4234〉 33

〈M4,1, 1, 2314, 3124, 4444〉 33

〈M5,3, 1, 2344, 3444, 4444〉 D4

〈N1, 1, 2002, 3023, 4234〉 33

〈N2, 1, 2002, 3033, 4234〉 33

〈N3, 2, 0111, 1344, 1444〉 49 D2

〈N4, 2, 3144, 4344, 4444〉 49

〈N5, 3, 0111, 1224, 1444〉 410 D2 D2

〈N6, 3, 2114, 1224, 4444〉 410 D3

CRL FLe 〈M6, 1, 2134, 3333, 4434〉 D3 D5

〈M7, 1, 2222, 3244, 4244〉 D4 D5

〈M8, 1, 2444, 3444, 4444〉 D4

〈N7, 1, 2002, 3003, 4234〉 D2

〈N8, 1, 2022, 3233, 4234〉 D2 D5

〈N9, 1, 2222, 3223, 4234〉 D5

〈N10, 1, 2222, 3233, 4234〉 D5

〈N11, 1, 2333, 3333, 4334〉 D5

〈N12, 1, 2444, 3444, 4444〉 D4

〈N13, 2, 0111, 1334, 1444〉 411 D2

〈N14, 2, 1111, 1334, 1444〉 411 D5

〈N15, 2, 1111, 1344, 1444〉 49 D5

〈N16, 2, 3114, 1334, 4444〉 411

〈N17, 2, 4114, 1334, 4444〉 411

〈N18, 2, 4144, 4334, 4444〉 411 D4

〈N19, 2, 4144, 4344, 4444〉 49 D4

〈N20, 3, 1011, 0222, 1244〉 33 21

〈N21, 3, 1111, 1224, 1444〉 410 D5 D5

〈N22, 3, 4114, 1224, 4444〉 410 D4 D4

RL FL 〈N23, 1, 2002, 3233, 4234〉 33

〈N24, 1, 2022, 3033, 4234〉 33

〈N25, 2, 4114, 4334, 4444〉 411

〈N26, 2, 4144, 1334, 4444〉 411

Table 7.

examination of other finite residuated lattices will lead to further subvarieties
where all finite members can be characterised.

Since the bottom element of a residuated lattice (if it exists) must always be a
multiplicative zero, the identity element of a nontrivial residuated lattice cannot
take the place of the bottom element. However there are other restrictions. The
elements that are covered by the identity element need to generate a Boolean
algebra under join and meet [9]. Hence there are no integral residuated lattices
with the diamond M or pentagon N as lattice reduct. The data in these tables
(and longer versions of them) can be used to discover other results of this form,
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Fig. 2. HS-poset of residuated lattices with ≤ 4 elements; remove dotted lines to get
the HS-poset of FLo-algebras

where the noticeable absence of certain configurations in all finite algebras up
to a certain size leads to the discovery of results that prove these configurations
can never occur in a (finite) residuated lattice.

Linearly ordered residuated lattices have been studied in much more detail
than subdirectly irreducible residuated lattices with a nonlinear or even nondis-
tributive lattice reduct. This is largely because linear orders fits well with the
algebraic theory of fuzzy logics. However the study of FL-algebras with weak
forms of classical negation is also of interest in substructural logic, and such
varieties are generally not determined by their linear members. Also varieties of
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modular residuated lattices and residuated ortholattices are not representable,
and studying their finite members may provide some insight or lead to conjec-
tures and results that may clarify aspects of these varieties.

Lastly, it is currently not known whether the variety of residuated lattices has
the amalgamation property. The finite algebras in this note could be a starting
point for setting up specific V-formations and testing if an amalgam can be
found in each case. If a general method can be developed from several such
examples, this could lead to a proof of the amalgamation property, and if a
counter example is found, then since the algebras involved are quite small, it is
likely to be a minimal failure of the amalgamation property.

3 Conclusion

While it is relatively easy to enumerate residuated lattices and FL-algebras with
more than 5 elements (up to about 10-12 elements depending on what subvariety
one restricts to), it is not so simple to get good diagrams of the HS-posets for
more than about 50 subdirectly irreducible algebras. The lattice of all subvari-
eties that are determined by FL-algebras of size ≤ 5 is isomorphic to the lattice
of downsets of a poset that has 820 elements. The poset can be calculated, but
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Fig. 4. HS-poset of InFL-algebras with ≤ 5 elements

it is unlikely that the number of downsets can be effectively determined since
the poset is very wide and thus would have on the order of 2300 downsets.

To get manageable diagrams, we restricted to join irreducible subvarieties
given by residuated lattices with ≤ 4 elements, subvarieties of commutative
integral linear residuated lattices and subvarieties of involutive FL-algebras. The
algebras and diagrams in this note can be used to investigate several interesting
questions about residuated lattices and FL-algebras.
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